Algebra 819 - Homework 7

نویسنده

  • Samuel Otten
چکیده

Proof. Let F be the field of fractions of R. By 6.2.8, we must show that R = Int(R,F). The inclusion R ⊆ Int(R,F) is immediate. Let f/g ∈ Int(R,F) and let it be written in lowest terms. Suppose to the contrary that f/g / ∈ R. Then g = q1 · · · q` with qj prime for 1 ≤ j ≤ `. We can also write f = p1 · · · pk where the pi are primes for 1 ≤ i ≤ k. Note that pi 6∼ qj for any i, j because f/g is in lowest terms. Since f/g is integral over R, there exists a monic polynomial in R[x] with f/g as a root. That is, for some collection of coefficients in R we have ( f

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebra 819 - Homework 6

(a) Let ¦ : V × S → V, (v, s) → v ¦ s be a function. Define ¦op : Sop × V → V, (s, v) → v ¦ s. Then ¦ is an R-linear right action of S on V if and only if ¦op is an R-linear action of Sop on V . (⇒) Suppose ¦ is an R-linear right action of S on V . By definition, for all s, t∈ S, u, v∈ V and r∈ R we have (i) v ¦ (st) = (v ¦ s) ¦ t (ii) v ¦ e = v (iii) (u + v) ¦ s = u ¦ s + v ¦ s (iv) (rv) ¦ s =...

متن کامل

Algebra 819 - Homework 1 Samuel

Proposition 1. Let R be a ring and M an R-module. Then EndR(M), the set of R-linear maps from M to M , is a subring of End(M). Proof. Recall from 3.1.6 that the ring (End(M), +, ◦) is defined by (α + β)(m) = α(m) + β(m), (α ◦ β)(m) = α(β(m)). We must verify the four subring conditions from 3.2.2. (i) The additive identity of End(M) is z : M → M, m → 0M . Note that for any m,n ∈ M z(m + n) = 0M ...

متن کامل

Diagnosing Student's Algebra Errors on the Web

Electronic Homework was an intelligent tutoring system that runs on stand-alone computers [1] initially and is now migrated to the Web to provide on-line homework tutorial. The system contains a database of different sets of algebra problems from which learners can choose what sort of problems to practice. When a learner is solving a problem, the system diagnoses concurrently every step he/she ...

متن کامل

Algebra 819 - Homework 2 Samuel

1 Let K be a field, V a finite-dimensional vector space over K, and T ∈ EndK(V ). For k ∈ K and S ∈ EndK(V ), define kS : V → V, v → k S(v). (a) Let Φ : K[x] → EndK(V ) be defined by Φ(k0 + k1x + k2x + . . . + knx) = k0T 0 + k1T 1 + k2T 2 + . . . + knT, where T 0 = idV . This is well-defined because a polynomial is completely determined by its coefficients. We will show that this is a homomorph...

متن کامل

Algebra 819 - Homework 4 Samuel Otten

Let K ≤ F be a normal field extension. Put S := S(K,F) and P := P(K,F). Let K ≤ E ≤ S. (a) We will show that S(E,F) = S. Let a ∈ S. Then a is separable over K. By 5.2.20, a is also separable over E, so a ∈ S(E,F) and S ⊆ S(E,F). Now note that E is a separable extension of K because E ≤ S. Let a ∈ S(E,F). Since a is separable over E, E(a) is a separable extension of E. Thus, K ≤ E ≤ E(a) is a se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007